
Adopting Java for the
Serverless world

from the perspective of the AWS developer

Vadym Kazulkin, ip.labs, Jug Saxony Day , 23 September 2022

Contact

Vadym Kazulkin
ip.labs GmbH Bonn, Germany

Co-Organizer of the Java User Group Bonn

v.kazulkin@gmail.com

@VKazulkin

https://www.linkedin.com/in/vadymkazulkin

https://www.iplabs.de/

ip.labs

https://www.iplabs.de/

Java popularity

https://redmonk.com/rstephens/2021/08/05/top-20-june-2021/ Vadym Kazulkin @VKazulkin , ip.labs GmbH

https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/ Vadym Kazulkin @VKazulkin , ip.labs GmbH

AWS and Serverless

2020 Magic Quadrant for Cloud Infrastructure & Platform Services
https://pages.awscloud.com/GLOBAL-multi-DL-gartner-mq-cips-2020-learn.html?pg=LWIAWS
https://aws.amazon.com/de/resources/analyst-reports/gartner-mq-cips-2021/

Vadym Kazulkin @VKazulkin , ip.labs GmbH

The State of Serverless 2022
https://www.datadoghq.com/state-of-serverless/

Vadym Kazulkin @VKazulkin , ip.labs GmbH

The State of Serverless 2021
https://www.datadoghq.com/state-of-serverless-2021

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Life of the Java (Serverless) developer
on AWS

AWS Java Versions Support

• Java 8

• With extended long-term support

• Java 11 (since 2019)

• Only Long Term Support (LTS) by AWS

• Current LTS Java version is Java 17

• Amazon Corretto Support for 17 is released, but not currently available for
AWS Lambda

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: https://aws.amazon.com/de/corretto/

Java ist very fast
and mature
programming
language…

Image: burst.shopify.com/photos/a-look-across-the-landscape-with-view-of-the-sea

… but Serverless
adoption of Java
looks like this

Vadym Kazulkin @VKazulkin , ip.labs GmbH

The State of Serverless 2021
https://www.datadoghq.com/state-of-serverless-2021

Vadym Kazulkin @VKazulkin , ip.labs GmbH

The State of Serverless 2022
https://www.datadoghq.com/state-of-serverless/

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Developers love Java and will be happy

to use it for Serverless

But what are the challenges ?

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Serverless with Java challenges

• “cold start” times (latencies)

• memory footprint (high cost in AWS)

AWS Lambda Basics

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Creating AWS Lambda with Java 1/3

:

Source https://blog.runscope.com/posts/how-to-write-your-first-aws-lambda-function

Full CPU access only
approx. at 1.8 GB
memory allocated

Creating AWS Lambda with Java 2/3

:

Source https://blog.runscope.com/posts/how-to-write-your-first-aws-lambda-function

Creating AWS Lambda with Java 3/3

:

Source https://docs.aws.amazon.com/lambda/latest/dg/java-context.html

AWS Lambda Price Model

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Cost for Lambda

REQUEST DURATION

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Request Tier

$ 0.20
Per 1 Mio Requests

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Duration Tier

$ 0.00001667 (x86)
$ 0.00001333 (Arm)

Per GB-Second

Vadym Kazulkin @VKazulkin , ip.labs GmbH

GB-Second

ONE SECOND ONE GB

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Example
• 1 Mio requests

• Lambda x86 with 512MiB

• Each lambda takes 200ms

0.5 GiB * 0.2 sec * 1 Mio

= 100 000 GB-Seconds

Requests:

$0.20

GB-Seconds:

$1.67

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Challenge Number 1 with Java is a

big cold-start

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: https://www.serverless.com/blog/keep-your-lambdas-warm

Cold Start

Sources: Ajay Nair „Become a Serverless Black Belt” https://www.youtube.com/watch?v=oQFORsso2go
Tomasz Łakomy "Notes from Optimizing Lambda Performance for Your Serverless Applications“ https://tlakomy.com/optimizing-lambda-performance-for-serverless-applications

• Start Firecracker VM

• AWS Lambda starts the JVM

• Java runtime loads and initializes

handler class

• Static initializer block of the handler class is
executed

• Init-phase has full CPU access up to 10 seconds for
free for the managed execution environments

• Lambda calls the handler method

Sources: Ajay Nair „Become a Serverless Black Belt” https://www.youtube.com/watch?v=oQFORsso2go
Tomasz Łakomy "Notes from Optimizing Lambda Performance for Your Serverless Applications“ https://tlakomy.com/optimizing-lambda-performance-for-serverless-applications
Michael Hart: „Shave 99.93% off your Lambda bill with this one weird trick“ https://hichaelmart.medium.com/shave-99-93-off-your-lambda-bill-with-this-one-weird-trick-33c0acebb2ea

Function lifecycle- a full cold start

Sources: Ajay Nair „Become a Serverless Black Belt” https://www.youtube.com/watch?v=oQFORsso2go
Tomasz Łakomy "Notes from Optimizing Lambda Performance for Your Serverless Applications“ https://tlakomy.com/optimizing-lambda-performance-for-serverless-applications

AWS Lambda cold start duration
per programming language

Source: Mikhail Shilkov: „AWS Lambda: Cold Start Duration per Language. 2020 edition” https://mikhail.io/serverless/coldstarts/aws/languages/

Cold start duration with Java

• Below 1 second is best-case cold start duration for very simple Lambda
like HelloWorld with no dependencies

• It goes up significantly with more complex scenarios

• Instantiation outside of the handler method (static instantiation) to communicate
with other (AWS) services (i.e. DynamoDB, SNS, SQS, 3rd party)

• Including more dependencies

• To minimize the cold start time apply best practices from this talk

• Worst-case cold starts can be higher than 10 and even 20 seconds

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

• Switch to the AWS SDK 2.0 for Java

• Lower footprint and more modular

• Allows to configure HTTP Client of your choice (i.e. Java own Basic HTTP Client or
newly introduced AWS Common Runtime async HTTP Client)

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Zoe Wang: „Introducing AWS Common Runtime HTTP Client in the AWS SDK for Java 2.x”
https://aws.amazon.com/de/blogs/developer/introducing-aws-common-runtime-http-client-in-the-aws-sdk-for-java-2-x/

S3AsyncClient.builder()
.httpClientBuilder(AwsCrtAsyncHttpClient.builder()
.maxConcurrency(50))
.build();

Best Practices and Recommendations

• Less (dependencies, classes) is more

• Include only required dependencies (e.g. not the whole AWS SDK 2.0 for Java, but the
dependencies to the clients to be used in Lambda)

• Exclude dependencies, which you don‘t need at runtime e.g. test frameworks like Junit

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javav2

<dependency>

<groupId>org.junit.jupiter</groupId>

<artifactId>junit-jupiter-api</artifactId>

<version>5.4.2</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>software.amazon.awssdk</groupId>

<artifactId>dynamodb</artifactId>

<version>2.10.86</version>

</dependency>

<dependency>

<groupId>software.amazon.awssdk</groupId>

<artifactId>bom</artifactId>

<version>2.10.86</version>

<type>pom</type>

<scope>import</scope>

</dependency>

Best Practices and Recommendations

AWS Lambda cold starts by memory size,
runtime and artifact size

Source: Mike Roberts "Analyzing Cold Start latency of AWS Lambda" https://blog.symphonia.io/posts/2020-06-30_analyzing_cold_start_latency_of_aws_lambda

Artifact Size:

• Small zip (1KB)
• Large zip (48MB)
• Large uberjar (53MB)

• Initialize dependencies during initialization phase

• Use static initialization in the handler class, instead of in the handler method (e.g.
handleRequest) to take the advantage of the access to the full CPU core for max 10 seconds

• In case of DynamoDB client put the following code outside of the handler method:

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()...build();
DynamoDB dynamoDB = new DynamoDB(client);

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

Best Practices and Recommendations

Provide all known values (for building clients i.e. DynamoDB client) to
avoid auto-discovery

• credential provider, region, endpoint

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
.withRegion(Regions.US_WEST_2)
.withCredentials(new ProfileCredentialsProvider("myProfile"))

.build();

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

Best Practices and Recommendations

Best Practices and Recommendations
Using Tiered Compilation

Achieve up to 60% faster startup times can use level 1 compilation with
little risk of reducing warm start performance

Mark Sailes: "Optimizing AWS Lambda function performance for Java”
https://aws.amazon.com/de/blogs/compute/optimizing-aws-lambda-function-performance-for-java/

Avoid:

• reflection

• runtime byte code generation

• runtime generated proxies

• dynamic class loading

Use DI Frameworks which aren‘t reflection-based

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

Best Practices and Recommendations

Cost optimization techniques

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Best Practices and Recommendations

Cost for Lambda

REQUEST DURATION

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Cost scales
linearly with
memory

Vadym Kazulkin @VKazulkin , ip.labs GmbH

More memory = more expensive?

Kazulkin @VKazulkin , ip.labs GmbH

Lambda Power Tuning 1/2

• Executes different
settings in parallel

• Outputs the optimal
setting

Image: https://github.com/alexcasalboni/aws-lambda-power-tuning Vadym Kazulkin @VKazulkin , ip.labs GmbH

Lambda Power Tuning 2/2

• Executes different
settings in parallel

• Outputs the optimal
setting

Image: https://github.com/alexcasalboni/aws-lambda-power-tuning
Alex Casalboni: “Deep dive: finding the optimal resources allocation for your Lambda functions“
https://dev.to/aws/deep-dive-finding-the-optimal-resources-allocation-for-your-lambda-functions-35a6

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Optimizing AWS Lambda cost and
performance using AWS Compute
Optimizer

Source: Chad Schmutzer „Optimizing AWS Lambda cost and performance using AWS Compute Optimizer”
https://aws.amazon.com/de/blogs/compute/optimizing-aws-lambda-cost-and-performance-using-aws-compute-optimizer/

Cost optimization

• Java is well optimized for long running server applications

• High startup times

• High memory utilization

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Even with all optimization applied we’ll be left with seconds of
the colds starts and high memory utilization

GraalVM enters the scene

Source: https://www.graalvm.org/

GraalVM

Goals:

Low footprint ahead-of-time mode for JVM-based languages

High performance for all languages

Convenient language interoperability and polyglot tooling

Source: „Everything you need to know about GraalVM by Oleg Šelajev & Thomas Wuerthinger” https://www.youtube.com/watch?v=ANN9rxYo5Hg

Source: https://www.graalvm.org/22.1/docs/introduction/#available-distributions

GraalVM
Architecture

Sources: Practical Partial Evaluation for High-Performance Dynamic Language Runtimes http://chrisseaton.com/rubytruffle/pldi17-truffle/pldi17-truffle.pdf
„The LLVM Compiler Infrastructure“ https://llvm.org/

SubstrateVM

Source: Oleg Šelajev, Thomas Wuerthinger, Oracle: “Deep dive into using GraalVM for Java and JavaScript”
https://www.youtube.com/watch?v=a-XEZobXspo

GraalVM on SubstrateVM
A game changer for Java & Serverless?

Java Function compiled into a native executable using
GraalVM on SubstrateVM reduces

• “cold start” times

• memory footprint

by order of magnitude compared to running on JVM.

Current challenges with native
executable using GraalVM

• AWS doesn’t provide GraalVM (Native Image) as Java Runtime out
of the box

• AWS provides Custom Runtime Option

Custom Lambda Runtimes

GraalVM Complitation Modes

Source: „Everything you need to know about GraalVM by Oleg Šelajev & Thomas Wuerthinger” https://www.youtube.com/watch?v=ANN9rxYo5Hg

AOT vs JIT

Source: „Everything you need to know about GraalVM by Oleg Šelajev & Thomas Wuerthinger” https://www.youtube.com/watch?v=ANN9rxYo5Hg

GraalVM Native Cold Start 2021

Source: Aleksandr Filichkin: "AWS Lambda battle 2021: performance comparison for all languages (cold and warm start)“
https://filia-aleks.medium.com/aws-lambda-battle-2021-performance-comparison-for-all-languages-c1b441005fd1

Support of GraalVM native images in
Frameworks

Spring Boot/ Spring Framework : Ongoing work on experimental
Spring Native project.

Quarkus: a Kubernetes Native Java framework developed by Red
Hat tailored for GraalVM and HotSpot, crafted from best-of-breed
Java libraries and standards.

Micronaut: a modern, JVM-based, full-stack framework for building
modular, easily testable microservice and serverless applications.

Common principles for all frameworks

• Rely on as little reflection as possible

• Avoid runtime byte code generation, runtime generated proxies and
dynamic class loading as much as possible

• Process annotations at compile time

• The common goals:

• increase developer productivity

• May decrease cold start times compared to plain Java solution (with and
without the usage of GraalVM Native Image) using various compile-time
optimization techniques

• Currently only available for Micronaut

Steps to deploy to AWS
• Installation prerequisites

• Framework of your choice (Micronaut, Quarkus, Spring Native)

• GraalVM and Native Image

• Apache Maven or Gradle

• AWS CLI and AWS SAM CLI (or SAM local for local testing)

• Build Linux executable of your application with GraalVM native-image

• Use Maven or Gradle plugin

• Deploy Linux executable as AWS Lambda Custom Runtime

• Function.zip with bootstrap Linux executable

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Quarkus

Source: https://quarkus.io/

Quarkus Example with Spring Annotations

Source: https://github.com/awslabs/aws-serverless-java-container/tree/master/samples/quarkus/pet-store

Build GraalVM Native Image with Quarkus

mvn –Pnative package
and optionally
-Dquarkus.native.container-
build=true

Build GraalVM Native Image with Quarkus

AWS Lambda Deployment of Custom
Runtime with SAM

Source: https://github.com/awslabs/aws-serverless-java-container/tree/master/samples/micronaut/pet-store

Local testing:

sam local start-api -t sam.native.yaml

curl localhost:3000/{yourURI}

Cloud deployment:

sam deploy -g -t sam.native.yaml

curl https://xxxxxxxxxx.execute-api.xx-xxxx-

1.amazonaws.com/Prod/pets/5

Quarkus Additional Features
• AWS Lambda currently works by implementing

com.amazonaws.services.lambda.runtime.RequestHandler interface or by using
Spring Web annotations model like @RestController, @RequestMapping

• Doesn‘t support Lambda function implementing Java 8 Function Interface

• Website (https://code.quarkus.io/)

• CLI for creating the App

• quarkus create app

• use quarkus-amazon-lambda extension in pom.xml

• quarkus build --native -Dquarkus.native.container-build=true

• Eclipse MicroProfile compatible

• Funqy for multi cloud solutions

Micronaut Framework

Source: https://micronaut.io/

Micronaut Example

Build GraalVM Native Image with Quarkus

./mvnw package -Dpackaging=native-image
-Dmicronaut.runtime=lambda

Packaging can also have docker or
docker-native value

Micronaut Additional Features

• AWS Lambda currently works by implementing its own annotations
(very similar to Spring Web) and should potentially work with Spring Web
annotations model like @RestController, @RequestMapping

• Website (https://micronaut.io/launch) or CLI for creating the App

• Custom Validators

• No support for MicroProfile

• Micronaut AOT

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Micronaut® AOT: build-time optimizations
for Micronaut applications

Micronaut AOT is an extension to the Micronaut Framework which is the
foundation to many optimizations that can be implemented at build time
but weren’t possible solely with annotation processing.

By effectively analyzing the deployment environment, AOT is capable of
reducing startup times or distribution size for both native and JVM
deliverables.

Source: “Introducing Micronaut® AOT: build-time optimizations for your Micronaut applications”
https://medium.com/graalvm/introducing-micronaut-aot-build-time-optimizations-for-your-micronaut-applications-68b8f1302c5
https://micronaut-projects.github.io/micronaut-maven-plugin/latest/examples/aot.html

./mvnw package -Dpackaging=native-image
-Dmicronaut.runtime=lambda -Dmicronaut.aot.enabled=true

Packaging can also have docker or
docker-native value

https://medium.com/graalvm/introducing-micronaut-aot-build-time-optimizations-for-your-micronaut-applications-68b8f1302c5

Micronaut® AOT: build-time optimizations
for Micronaut applications

Source: “Introducing Micronaut® AOT: build-time optimizations for your Micronaut applications”
https://medium.com/graalvm/introducing-micronaut-aot-build-time-optimizations-for-your-micronaut-applications-68b8f1302c5

https://medium.com/graalvm/introducing-micronaut-aot-build-time-optimizations-for-your-micronaut-applications-68b8f1302c5

Micronaut® AOT: build-time optimizations
for Micronaut applications

Source: “Introducing Micronaut® AOT: build-time optimizations for your Micronaut applications”
https://medium.com/graalvm/introducing-micronaut-aot-build-time-optimizations-for-your-micronaut-applications-68b8f1302c5

https://medium.com/graalvm/introducing-micronaut-aot-build-time-optimizations-for-your-micronaut-applications-68b8f1302c5

Spring (Boot) Framework

Source: https://spring.io/

Spring GraalVM Native Project

Vadym Kazulkin @VKazulkin , ip.labs GmbHSource: https://github.com/spring-projects-experimental/spring-native

Spring Boot 3 and
Spring Framework 6, due in
late 2022, will have built-in support
for native Java.

Spring Native Example

Source: https://github.com/spring-projects-experimental/spring-native/tree/main/samples/cloud-function-aws

curl https://xxxxxxxxxx.execute-api.

xx-xxxx-1.amazonaws.com/prod/book/5

https://xxxxxxxxxx.execute-api/

Build GraalVM Native Image with Spring

mvn –Pnative package

Source: https://github.com/spring-projects-experimental/spring-native/tree/main/samples/cloud-function-aws

Spring Native

• AWS Lambda currently only works by implementing Java 8 Functional Interface

• Doesn‘t support Lambda function implementing
com.amazonaws.services.lambda.runtime.RequestHandler interface

• Doesn‘t support Spring Web Annotations model like @RestController,
@RequestMapping, which Quarkus and Micronaut do

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Lambda demo with common Java
application frameworks

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://github.com/aws-samples/serverless-java-frameworks-samples

Lambda Container Image Support

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: „https://aws.amazon.com/de/blogs/aws/new-for-aws-lambda-container-image-support/

Lambda Container Image Support

• What about the support of the current Java version for
Lambda?

• Amazon Corretto provides Long Term Support (LTS)

• Currently only Java 8, Java 11

• Use Container (Docker) Image with i.e. Java 19

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: https://aws.amazon.com/de/corretto/

Lambda Container Image Support with Java 19

Vadym Kazulkin @VKazulkin , ip.labs GmbH

https://aws.amazon.com/de/blogs/compute/build-a-custom-java-runtime-for-aws-lambda//

Conclusion
• GraalVM and Frameworks are really powerful with a lot of potential

• GraalVM Native Image improves cold starts and memory footprint
significally

• GraalVM Native Image is currently not without challenges

• AWS Lambda Custom Runtime requires Linux executable only

• Building Custom Runtime requires some additional effort

• e.g. you need to scale CI pipeline to build memory-intensive native image yourself

• Build time is a factor

• You pay for the init-phase of the function packaged as AWS Lambda Custom and Docker
Runtime

• Init-phase is free for the managed runtimes like Java 8 and Java 11 (Corretto)

Personal Recommendations (highly opinionated)
• By default start with plain managed Java Long Term Support Version with Amazon

Corretto 11 + optionally your favorite framework (Micronaut, Quarkus)

• If you don‘t want to miss years of innovation and use the newest Java Version?

• Use Lambda Docker (Container) Image Support

• If your function needs constantly low response times for the known period of time ?

• Use Provisioned Concurrency additionally

• If your function needs constantly low response time and low cost is a requirement?

• Use GraalVM Native Image + optionally your favorite framework (Micronaut, Quarkus, Spring
Boot Native) and AWS Lambda Custom Runtime

• The usage of the frameworks (Micronaut, Quarkus, Spring Boot GraalVM Native)
may improve your productivity but may add up to longer build time)

Try it yourselves

• Quarkus

• https://github.com/aws-samples/aws-quarkus-demo/tree/main/lambda

• https://quarkus.io/guides/amazon-lambda

• Micronaut

• https://github.com/micronaut-guides/micronaut-function-aws-lambda

• Spring Native

• https://github.com/spring-projects-experimental/spring-native/tree/main/samples/cloud-
function-aws

• Misc examples with all frameworks

• https://github.com/awslabs/aws-serverless-java-container/tree/master/samples

What’s may come next

• Speed up warmup time of the Java applications
• The C2 compiler is used for very hot methods, which uses profiling data collected from

the running application to optimize as much as possible.
• Techniques like aggressive method inlining and speculative optimizations can easily

lead to better performing code than generated ahead of time (AOT) using a static
compiler.

• JVM needs both time and compute resources to determine which methods to compile
and compiling them. This same work has to happen every time we run an application

• Ideally, we would like to run the application and then store all the state about the
compiled methods, even the compiled code and state associated with the application
and then we’d like to be able to restore it

https://www.azul.com/blog/superfast-application-startup-java-on-crac/

What’s may come next

• CRaC (Coordinated Restore at Checkpoint) Project
• Based on Linux Checkpoint/Restore in Userspace (CRIU)
• Simple API: beforeCheckpoint() and afterRestore() methods

https://www.azul.com/blog/superfast-application-startup-java-on-crac/
https://github.com/CRaC/docs
https://criu.org/Main_Page

www.iplabs.de

Accelerate Your Photo Business

Get in Touch

https://www.iplabs.de/
https://www.iplabs.de/
http://www.iplabs.de/en

