
10 patterns for more resilient applications
A gentle start into resilient software design

Uwe Friedrichsen (codecentric AG) – JUG Saxony Day – Radebeul, 23. September 2022

Uwe Friedrichsen

Works @ codecentric
https://twitter.com/ufried
https://www.speakerdeck.com/ufried
https://ufried.com/

What is that “resilience” thing?

re·sil·ience (rĭ-zĭl′yəns)

n.

1. The ability to recover quickly from illness, change, or misfortune; buoyancy.
2. The property of a material that enables it to resume its original shape or position after being
bent, stretched, or compressed; elasticity.

American Heritage® Dictionary of the English Language, Fifth Edition. Copyright © 2016 by Houghton Mifflin Harcourt Publishing
Company. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved.

https://www.thefreedictionary.com/resilience

What does it mean for IT systems?

re·sil·ience (of IT systems)

n.

The ability of a system to handle unexpected situations
• without the user noticing it (ideal case)
• with a graceful degradation of service and

quick recovery to normal operations (non-ideal case)

The cautious attempt to provide a useful definition for resilience in the context of software systems.
No copyright attached, but also no guarantee that this definition is sufficient for all relevant purposes.

Can’t we just leave it to ops
as we did it in the past?

What is the problem?

Let ops run our software on some
HA infrastructure or alike
and everything will be fine.

Sorry, not that easy anymore

For a single, monolithic, isolated system
this might indeed work, but …

(Almost) every system is a distributed system.

-- Chas Emerick

http://www.infoq.com/presentations/problems-distributed-systems

The software you develop and maintain is most likely
part of a (big) distributed system landscape

Properties of distributed systems

• Distributed systems introduce non-determinism regarding

• Execution completeness

• Message ordering

• Communication timing

• You will be affected by this at the application level

• Don’t expect your infrastructure to hide all effects from you

• Better know how to detect if it hit you and how to respond

Okay, I buy it. But how do I start?

Let us start simple … *

* which often improves the situation amazingly much

Let us create our starter’s toolbox

Resilience starter’s toolbox

Accessing other systems

Resilience starter’s toolbox Accessing
other systems

(downstream)

from urllib3 import PoolManager

URL = <…>

http = PoolManager()

r = http.request('GET’, URL)

https://github.com/urllib3/urllib3

Failure type

Resilience starter’s toolbox

Brittle connection
(omission failure)

Slow response
(timing failure)

Accessing
other systems

(downstream)

Wrong response
(response failure)

No response
(crash failure)

The other system does not respond at all

The other system does not respond reliably

It takes too long until the other system responds

The other system responds, but the response is not okay

Detection

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type

Slow response
(timing failure)

Accessing
other systems

(downstream)

Wrong response
(response failure)

Error checking

Error checking

• Most basic error detection pattern

• Yet too often neglected

• Multiple implementation variants

• Exception handling (Java, C++, …)

• Return code checking (C, …)

• Extra error return value (Go, …)

• Thorough error checking tends to make code harder to read

Detection

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type

Slow response
(timing failure)

Accessing
other systems

(downstream)

Wrong response
(response failure)

Error checking

Timeout

Timeout

• Preserve responsiveness independent of downstream latency

• Essential error detection pattern

• Crucial if using synchronous communication

• Also needed if using asynchronous request/response style

• Good library support in most programming languages

Detection

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type

Slow response
(timing failure)

Accessing
other systems

(downstream)

Wrong response
(response failure)

Error checking

Timeout

Circuit
breaker

Circuit breaker

• Probably most often cited resilience pattern

• Extension of the timeout pattern

• Takes downstream unit offline if calls fail multiple times

• Can be used for most failure types

• Crash failures, omission failure, timing failures

• Many implementations available

Adding error and timeout detection

from urllib3 import PoolManager

URL = <…>

http = PoolManager()

r = http.request('GET’, URL)

https://github.com/urllib3/urllib3

from concurrent.futures import ThreadPoolExecutor, TimeoutError

from urllib3 import PoolManager

from urllib3.exceptions import HTTPError

URL = 'http://httpbin.org/delay/2'

def get_url(http, url):

return http.request('GET', url)

http = PoolManager()

with ThreadPoolExecutor(max_workers=1) as executor:

future = executor.submit(get_url, http, URL)

try:

r = future.result(timeout=0.5)

except TimeoutError:

print('Request timed out')

future.cancel()

except HTTPError:

print('An error occurred')

else:

print('Received:', r.data)

from urllib3 import PoolManager

from urllib3.exceptions import HTTPError

URL = 'http://httpbin.org/delay/2'

http = PoolManager()

try:

r = http.request('GET', URL, timeout=0.5)

except HTTPError:

print('An error occurred or request timed out')

else:

print('Received:', r.data)

Detection

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type

Slow response
(timing failure)

Accessing
other systems

(downstream)

Wrong response
(response failure)

Error checking

Timeout

Response value
checking

Circuit
breaker

Response value checking

• As obvious as it sounds, yet often neglected

• Protection from broken/malicious return values

• Especially do not forget to check for Null values

• Quite good library support

• But often do not cover all checks needed

• Consider specific data types

Response
w/o redundancy

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection

Slow response
(timing failure)

Error checking

Timeout

Response value
checking

Accessing
other systems

(downstream)

Wrong response
(response failure)

Retry

Circuit
breaker

Retry

• Basic recovery pattern for downstream calls

• Recover from omission or other transient errors

• Limit retries to minimize extra load on an overloaded resource

• Limit retries to avoid recurring errors

• Some library support available

Response
w/o redundancy

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection

Slow response
(timing failure)

Error checking

Timeout

Response value
checking

Accessing
other systems

(downstream)

Wrong response
(response failure)

Retry

Circuit
breaker

Backup
request

Backup request

• Send request to multiple workers (usually with some delay)

• Use quickest reply and discard all other responses

• Prevents latent responses (or at least reduces probability)

• Requires redundancy – trades resources for availability

also see: J. Dean, L. A. Barroso, “The tail at scale”, Communications of the ACM, Vol. 56 No. 2

Response
w/o redundancy

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection

Slow response
(timing failure)

Error checking

Timeout

Response value
checking

Accessing
other systems

(downstream)

Wrong response
(response failure)

Retry

Caching
Circuit
breaker

Backup
request

Caching

• Re-use responses from prior calls to downstream resources

• Can bridge temporary unavailability of resources

• Use with caution

• Requires extra resources to store cached data

• Leaves you with potentially stale data
and all consistency issues associated with it

• Good tool and library support

Response
w/o redundancy

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection

Slow response
(timing failure)

Error checking

Timeout

Response value
checking

Accessing
other systems

(downstream)

Wrong response
(response failure)

Retry

Fallback

Caching
Circuit
breaker

Backup
request

Fallback

• Execute an alternative action if the original action fails

• Basis of most mitigation patterns

• Widespread simple variants

• Fail silently: silently ignore error and continue processing

• Default value: return predefined default value if error occurs

• Note that fallback action is a business decision

Adding retry and fallback

from urllib3 import PoolManager

from urllib3.exceptions import HTTPError

URL = 'http://httpbin.org/delay/2'

http = PoolManager()

try:

r = http.request('GET', URL, timeout=0.5)

except HTTPError:

print('An error occurred or request timed out')

else:

print('Received:', r.data)

from urllib3 import PoolManager

from urllib3.exceptions import HTTPError

URL = 'http://httpbin.org/delay/2'

http = PoolManager()

def get_url(http, url):

try:

r = http.request('GET', url, timeout=0.5)

except HTTPError:

return None # None means something went wrong

else:

return r.data

d = get_url(http, URL)

if d is None:

d = get_url(http, URL) # Retry once

if d is None:

d = 42 # Execute fallback

print('Received:’, d)

from urllib3 import PoolManager

from urllib3.exceptions import HTTPError

URL = 'http://httpbin.org/delay/2'

http = PoolManager()

try:

r = http.request('GET', URL, timeout=0.5, retries=1)

except HTTPError:

d = 42 # Execute fallback

else:

d = r.data

print('Received:', d)

Response
w/ redundancy

Response
w/o redundancy

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection

Slow response
(timing failure)

Error checking

Timeout

Response value
checking

Accessing
other systems

(downstream)

Wrong response
(response failure)

Retry

Fallback

Caching

Failover

Circuit
breaker

Backup
request

Failover

• Used if simpler recovery measures fail or take too long

• Many implementation variants available

• Good support on the infrastructure level

• Recovery and state replication usually not covered

• Mind the business case

• Requires redundancy – trades resources for availability

• Added costs need to justify added value

Response
w/ redundancy

Response
w/o redundancy

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection

Slow response
(timing failure)

Error checking

Timeout

Response value
checking

Accessing
other systems

(downstream)

Wrong response
(response failure)

Retry

Fallback

Caching

Failover

Custom response

Circuit
breaker

Postel’s law

Backup
request

Remember Postel’s law

“Be conservative in what you do,
be liberal in what you accept from others”

(Often reworded as: “Be conservative in what you send, be liberal in what you accept”)

see also: https://en.wikipedia.org/wiki/Robustness_principle

Being accessed by other systems

Being accessed
by other systems

(upstream)

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy

Slow response
(timing failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Accessing
other systems

(downstream)
Response

w/ redundancy

Wrong response
(response failure) Custom response

Circuit
breaker

Postel’s law

Backup
request

from fastapi import FastAPI

app = FastAPI()

@app.get("/square/{number}")

def read_square(number):

n = int(number)

return {"result": n*n}

https://fastapi.tiangolo.com/

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Wrong response
(response failure) Custom response

Circuit
breaker

Postel’s law

The request parameters are not okay

The other systems send too many requests

Backup
request

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Wrong response
(response failure) Custom response

Circuit
breaker

Postel’s law

Request parameter
checking

Backup
request

Request parameter checking

• As obvious as it sounds, yet often neglected

• Protection from broken/malicious request parameters

• Especially do not forget to check for Null values

• Quite good library support

• But often do not cover all checks needed

• Consider specific data types

Adding parameter checking

from fastapi import FastAPI

app = FastAPI()

@app.get("/square/{number}")

def read_square(number):

n = int(number)

return {"result": n*n}

https://fastapi.tiangolo.com/

from fastapi import FastAPI, Path

app = FastAPI()

@app.get("/square/{number}")

def read_square(number: int = Path(..., gt=0, lt=100)):

return {"result": number*number}

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Wrong response
(response failure) Custom response

Monitoring

Circuit
breaker

Postel’s law

Request parameter
checking

Backup
request

Monitoring

• Indispensable when running distributed systems

• Good tool support available

• Usually needs application-level support for best performance

• Application-level and business-level metrics

• Should be combined with self-healing measures

• Alarms should only be sent if self-healing fails

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Monitoring

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Shed load

Circuit
breaker

Postel’s law

Backup
request

Shed load

• Limit load to keep throughput of resource acceptable

• Reject (shed) requests (“rate limiting”)

• Best shed load at periphery

• Minimize impact on resource itself

• Good tool support available

• Usually requires monitoring data to watch load of resource

• Try not to break ongoing multi-request sessions

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Monitoring

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Shed load

Share load

Circuit
breaker

Postel’s law

Backup
request

Share load

• Share load between resources to keep throughput good

• Use if additional resources for load sharing can be used

• Can be implemented statically or dynamically (“auto-scaling”)

• Very good tool support available

• Minimize synchronization needed between resources

• Synchronization needs kill scalability

Useful complementing patterns

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy Complement

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Shed load

Share load
Monitoring

Idempotency

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Circuit
breaker

Postel’s law

Monitoring

Backup
request

Idempotency

• Non-idempotent calls become very complicated if they fail

• Idempotent calls can be repeated without problems

• Always return the same result

• Do not trigger any cumulating side-effects

• Reduces coupling between nodes

• Simplifies responding to most failure types a lot

• Very fundamental resilience and scalability pattern

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy Complement

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Shed load

Share load
Monitoring

Idempotency

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Temporal
decoupling

Circuit
breaker

Postel’s law

Monitoring

Backup
request

Temporal decoupling

• Request, processing and response are temporally decoupled

• Simplifies responding to timing failures a lot

• Not necessary to recover from failures
within caller’s response time expectations

• Functional design issue

• Technology only augments it

• Enables simpler and more robust communication types

• E.g., batch processing

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy Complement

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Shed load

Share load
Monitoring

Idempotency

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Temporal
decoupling

Circuit
breaker

Quorum based
reads & writes

Postel’s law

Monitoring

Backup
request

Quorum-based reads and writes

• Became popular with the rise of NoSQL databases

• Useful pattern for distributed, replicated data stores

• Relaxes consistency constraints while writing

• Detects inconsistencies due to a (temporally) failed prior write

• Not a replacement for response value checking

• Not to be confused with ACID transactions

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy Complement

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Shed load

Share load
Monitoring

Idempotency

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Temporal
decoupling

Circuit
breaker

Quorum based
reads & writes

Postel’s law

Graceful startup

Monitoring

Backup
request

Graceful startup

• Implement graceful startup mode

• Wait until all required resources and services
are available before switching to runtime mode

• Makes application startup order interchangeable

• Crucial for quick recovery after bigger failures

• Simple and powerful, but often neglected pattern

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy Complement

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Shed load

Share load
Monitoring

Idempotency

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Temporal
decoupling

Circuit
breaker

Quorum based
reads & writes

Postel’s law

Graceful startup

Monitoring

Fail fast

Backup
request

Fail fast

• “If you know you’re going to fail, you better fail fast”

• Usually implemented in front of costly actions

• Saves time and resources by avoiding foreseeable failures

• Useful in normal operations mode

• Can be counterproductive in startup mode

What can we delegate to the
infrastructure level?

Resilience starter’s toolbox

No response
(crash failure)

Brittle connection
(omission failure)

Failure type
Detection Response

w/o redundancy Complement

Slow response
(timing failure)

Wrong request
(response failure)

Error checking

Timeout

Fallback

Caching

Failover
Retry

Response value
checking

Shed load

Share load
Monitoring

Idempotency

Accessing
other systems

(downstream)

Being accessed
by other systems

(upstream)

Overload
(timing failure)

Response
w/ redundancy

Request parameter
checking

Wrong response
(response failure) Custom response

Temporal
decoupling

Circuit
breaker

Quorum based
reads & writes

Postel’s law

Graceful startup

Monitoring

Fail fast

Coarse-grained

Generic

Needs application-level metrics and interaction

Coarse-grained

Backup
request

But that is still a lot to implement

But what should be the alternative?

Should we let the application crash
whenever something goes wrong?

Always keep in mind …

The question is no longer, if failures will hit you

The only question left is, when and how bad they will hit you

Thus, look for library and framework support … but do the work!

Everyone loves resilient applications

Wrap-up

Wrap-up

• Distribution makes resilient software design mandatory

• Failures will hit you at the application level

• The starter’s toolbox

• Delegate to the infrastructure what is possible

• ... but consider the limitations

• Look for library and framework support

Recommended readings

Release It! Design and Deploy Production-Ready Software,
Michael Nygard, 2nd edition, Pragmatic Bookshelf, 2018

Patterns for Fault Tolerant Software,
Robert S. Hanmer, Wiley, 2007

Distributed Systems – Principles and Paradigms,
Andrew Tanenbaum, Marten van Steen, 3rd Edition, 2017,
https://www.distributed-systems.net/index.php/books/ds3/

On Designing and Deploying Internet-Scale Services,
James Hamilton, 21st LISA Conference 2007

Site Reliability Engineering,
Betsy Beyer et al., O’Reilly, 2016

Uwe Friedrichsen

Works @ codecentric
https://twitter.com/ufried
https://www.speakerdeck.com/ufried
https://ufried.com/

