
Serialization

ELCO

Tianjin

Dresden

Oberstenfeld

From the Sensor to the Human and back again
The source of our success

Serialization

Serialization

Table of contents
1. Brief history

2. Serialisation methods in practice
a. Custom
b. JSON
c. Java.io.Serializable
d. Protobuf
e. Flatbuffers

3. Benchmarks

4. Conclusion

History
● Serialization exists since start of computer

sciences

● 1980: First standard - Xerox Network
Systems Courier RPC

● 1987: Sun published XDR

● 1990’s: CORBA, COM, RMI distribute

● Late 1990’s: Bigger memory and
bandwidths allow human readable formats
(XML)

● 2000: Java Script Object Notation (JSON)
first standard 2013

● YAML in 2001

● ProtoBuf 2001-2008

● Flatbuffers 2014

● 2019: New Java Serialisation?
http://cr.openjdk.java.net/~briangoetz/amb
er/serialization.html

http://cr.openjdk.java.net/~briangoetz/amber/serialization.html
http://cr.openjdk.java.net/~briangoetz/amber/serialization.html

Serialisation methods

Custom serialization method

NATS

● Simple, secure and high performance
open source messaging system

NATS documentation:

“Unlike traditional messaging systems that use a
binary message format that require an API to
consume,

the text-based NATS protocol makes it easy to
implement clients in a wide variety of
programming and scripting languages.”

NATS

JSON
Douglas Crockford: “It’s not too bad.”

Xi - Editor

● Text editor (framework) by Raph Levien

● Initially developed for Fuchsia

● Micro service architecture

Raph Levien:

I considered binary formats, but the actual
improvement in performance would be
completely in the noise.

Using JSON considerably lowers friction for
developing plug-ins, as it’s available out of the
box for most modern languages, and there are
plenty of the libraries available for the other
ones.

IoTHub Developer

● Usage in REST API and for unknown data
structures

● Encoding/Decoding in most language
available

● Handling differs from language to
language

● Best usage in JS

Use case:

● Transfer a SQL result set between Golang
and JavaScript

● Having test validating handling

● Some code ...

Java Serializable
“He [Mark Reinhold] estimates that at least a third —maybe even half— of Java

vulnerabilities have involved serialization”

Stream magic

Stream version

Flag for new object

Flag for new class

Length of class name

class name

Serial version id

Some flags

No of fields in class

Type of first field

Length of field name

Name of field

Field content of title field

Protobuf
language-neutral, platform-neutral extensible mechanism for serializing structured

data

Type and number of field

Value of field 1 (118)

Type and number of field

Length of string

Value of second field

Elco IoTHub

● Industrial IoT Platform

● Micro service architecture

● Services written in Go, NodeJs, C#

● Protobuf used for service to service
communication and persistence

Reasons for Protobuf:

● Small messages

● Fast (for our use case)

● Language independent

● Build in versioning

● Big community

IoTHub Developer

● Usage in gRPC between agents and
IoTHub

● Big amount of generated code

● In some cases hard work with IDEs
(Goland vs. Ryder)

● But usage is not complex

Use case:

● Agent - Gateway communication

● Gateway service with two functions

● Some code ...

Flatbuffers
language-neutral, platform-neutral extensible mechanism for serializing structured

data

Position of root table = 20

Rel. position of vtable = -14

Size of vtable = 20

Object size

Relative position of first field (id = 20)

Value of field id = 118

Relative position of second field (name = 12)

Relative position of value of second field (name = 12) Length of value

Facebook - Android
● Segments of social graph stored on

devices Reasons for Flatbuffers:

● Story load time from disk cache is reduced
from 35 ms to 4 ms per story

● Transient memory allocations are reduced
by 75 percent

● Cold start time is improved by 10-15 percent

● We have reduced storage size by 15
percent

IoTHub Developer
● Usage as communication protocol

between JavaScript (V8) and GoLang

● Similar handling in the different target
languages

● Strings, vectors need some effort
preparing serialization

● Deserialization on the other side is simple

● Access to single fields without dedicated
deserialization step

Use case:

● SQL Select query

● Sql.query(db, "SELECT * FROM person;")

● Some code ...

Benchmarks

Benchmarks

Flatbuffers > Protocol Buffers > JSON

https://google.github.io/flatbuffers/flatbuffers_benchmarks.html

https://google.github.io/flatbuffers/flatbuffers_benchmarks.html

Benchmarks

Protocol Buffers > FlatBuffers >> JSON

https://github.com/alecthomas/go_serialization_benchmarks

https://github.com/alecthomas/go_serialization_benchmarks

Benchmarks

Protocol Buffers = FlatBuffers > JSON

https://github.com/smallnest/gosercomp

https://github.com/smallnest/gosercomp

XI - Editor

Conclusion

Conclusion

1. Choose one of:
JSON, Flatbuffers, Protobuf,
Thrift, Avro, Custom, etc.

2.
Test
it!

Is it:
● Available for your

programming
language?

● Nice to use?
● Good to integrate

into CI?
● Maintained?
● Made for your use

case? 3.
Benchmark
it for your

specific use
case!

Does it fit your
requirements?

4. Use it!

no no

yes yes

Thanks for listening!

Sources
● https://en.wikipedia.org/wiki/Comparison_of_data-serialization_f

ormats
● https://nats-io.github.io/docs/nats_protocol/nats-protocol.html
● https://nats-io.github.io/docs/developer/concepts
● Douglas Crockford: The JSON Saga,

https://www.youtube.com/watch?v=-C-JoyNuQJs
● The Post JavaScript Apocalypse - Douglas Crockford,

https://www.youtube.com/watch?v=NPB34lDZj3E
● Xi: an editor for the next 20 years,

https://www.recurse.com/events/localhost-raph-levien
● https://github.com/xi-editor/xi-editor
● https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.ht

ml
● http://cr.openjdk.java.net/~briangoetz/amber/serialization.html
● https://www.javaworld.com/article/2072752/the-java-serialization

-algorithm-revealed.html
● https://www.infoworld.com/article/3275924/oracle-plans-to-dump

-risky-java-serialization.html
● https://developers.google.com/protocol-buffers/docs/overview#a

-bit-of-history

● https://developers.google.com/protocol-buffers/docs/encodin
g

● https://developers.google.com/protocol-buffers/docs/proto3
● https://github.com/mzaks/FlatBuffersSwift/wiki/FlatBuffers-Ex

plained
● https://google.github.io/flatbuffers/flatbuffers_guide_tutorial.ht

ml
● https://google.github.io/flatbuffers/flatbuffers_internals.html
● https://google.github.io/flatbuffers/flatbuffers_white_paper.ht

ml
● https://google.github.io/flatbuffers/flatbuffers_benchmarks.ht

ml
● https://code.fb.com/android/improving-facebook-s-performan

ce-on-android-with-flatbuffers/
● https://github.com/alecthomas/go_serialization_benchmarks
● https://github.com/smallnest/gosercomp

https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats
https://en.wikipedia.org/wiki/Comparison_of_data-serialization_formats
https://nats-io.github.io/docs/nats_protocol/nats-protocol.html
https://nats-io.github.io/docs/developer/concepts
https://www.youtube.com/watch?v=-C-JoyNuQJs
https://www.youtube.com/watch?v=NPB34lDZj3E
https://www.recurse.com/events/localhost-raph-levien
https://github.com/xi-editor/xi-editor
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
http://cr.openjdk.java.net/~briangoetz/amber/serialization.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.javaworld.com/article/2072752/the-java-serialization-algorithm-revealed.html
https://www.infoworld.com/article/3275924/oracle-plans-to-dump-risky-java-serialization.html
https://www.infoworld.com/article/3275924/oracle-plans-to-dump-risky-java-serialization.html
https://developers.google.com/protocol-buffers/docs/overview#a-bit-of-history
https://developers.google.com/protocol-buffers/docs/overview#a-bit-of-history
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/mzaks/FlatBuffersSwift/wiki/FlatBuffers-Explained
https://github.com/mzaks/FlatBuffersSwift/wiki/FlatBuffers-Explained
https://google.github.io/flatbuffers/flatbuffers_guide_tutorial.html
https://google.github.io/flatbuffers/flatbuffers_guide_tutorial.html
https://google.github.io/flatbuffers/flatbuffers_internals.html
https://google.github.io/flatbuffers/flatbuffers_white_paper.html
https://google.github.io/flatbuffers/flatbuffers_white_paper.html
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://code.fb.com/android/improving-facebook-s-performance-on-android-with-flatbuffers/
https://code.fb.com/android/improving-facebook-s-performance-on-android-with-flatbuffers/
https://github.com/alecthomas/go_serialization_benchmarks
https://github.com/smallnest/gosercomp

